This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | |- B = ( Base ` C ) |
|
| issect.h | |- H = ( Hom ` C ) |
||
| issect.o | |- .x. = ( comp ` C ) |
||
| issect.i | |- .1. = ( Id ` C ) |
||
| issect.s | |- S = ( Sect ` C ) |
||
| issect.c | |- ( ph -> C e. Cat ) |
||
| Assertion | sectffval | |- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | |- B = ( Base ` C ) |
|
| 2 | issect.h | |- H = ( Hom ` C ) |
|
| 3 | issect.o | |- .x. = ( comp ` C ) |
|
| 4 | issect.i | |- .1. = ( Id ` C ) |
|
| 5 | issect.s | |- S = ( Sect ` C ) |
|
| 6 | issect.c | |- ( ph -> C e. Cat ) |
|
| 7 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 9 | fvexd | |- ( c = C -> ( Hom ` c ) e. _V ) |
|
| 10 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( c = C -> ( Hom ` c ) = H ) |
| 12 | simpr | |- ( ( c = C /\ h = H ) -> h = H ) |
|
| 13 | 12 | oveqd | |- ( ( c = C /\ h = H ) -> ( x h y ) = ( x H y ) ) |
| 14 | 13 | eleq2d | |- ( ( c = C /\ h = H ) -> ( f e. ( x h y ) <-> f e. ( x H y ) ) ) |
| 15 | 12 | oveqd | |- ( ( c = C /\ h = H ) -> ( y h x ) = ( y H x ) ) |
| 16 | 15 | eleq2d | |- ( ( c = C /\ h = H ) -> ( g e. ( y h x ) <-> g e. ( y H x ) ) ) |
| 17 | 14 16 | anbi12d | |- ( ( c = C /\ h = H ) -> ( ( f e. ( x h y ) /\ g e. ( y h x ) ) <-> ( f e. ( x H y ) /\ g e. ( y H x ) ) ) ) |
| 18 | simpl | |- ( ( c = C /\ h = H ) -> c = C ) |
|
| 19 | 18 | fveq2d | |- ( ( c = C /\ h = H ) -> ( comp ` c ) = ( comp ` C ) ) |
| 20 | 19 3 | eqtr4di | |- ( ( c = C /\ h = H ) -> ( comp ` c ) = .x. ) |
| 21 | 20 | oveqd | |- ( ( c = C /\ h = H ) -> ( <. x , y >. ( comp ` c ) x ) = ( <. x , y >. .x. x ) ) |
| 22 | 21 | oveqd | |- ( ( c = C /\ h = H ) -> ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( g ( <. x , y >. .x. x ) f ) ) |
| 23 | 18 | fveq2d | |- ( ( c = C /\ h = H ) -> ( Id ` c ) = ( Id ` C ) ) |
| 24 | 23 4 | eqtr4di | |- ( ( c = C /\ h = H ) -> ( Id ` c ) = .1. ) |
| 25 | 24 | fveq1d | |- ( ( c = C /\ h = H ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
| 26 | 22 25 | eqeq12d | |- ( ( c = C /\ h = H ) -> ( ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) <-> ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) |
| 27 | 17 26 | anbi12d | |- ( ( c = C /\ h = H ) -> ( ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
| 28 | 9 11 27 | sbcied2 | |- ( c = C -> ( [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) <-> ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) ) ) |
| 29 | 28 | opabbidv | |- ( c = C -> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } = { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) |
| 30 | 8 8 29 | mpoeq123dv | |- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 31 | df-sect | |- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
|
| 32 | 1 | fvexi | |- B e. _V |
| 33 | 32 32 | mpoex | |- ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) e. _V |
| 34 | 30 31 33 | fvmpt | |- ( C e. Cat -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 35 | 6 34 | syl | |- ( ph -> ( Sect ` C ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |
| 36 | 5 35 | eqtrid | |- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x H y ) /\ g e. ( y H x ) ) /\ ( g ( <. x , y >. .x. x ) f ) = ( .1. ` x ) ) } ) ) |