This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the section relation in a category. Given arrows f : X --> Y and g : Y --> X , we say f Sect g , that is, f is a section of g , if g o. f = 1X . If there there is an arrow g with f Sect g , the arrow f is called a section, see definition 7.19 of Adamek p. 106. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sect | ⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csect | ⊢ Sect | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 7 | vy | ⊢ 𝑦 | |
| 8 | vf | ⊢ 𝑓 | |
| 9 | vg | ⊢ 𝑔 | |
| 10 | chom | ⊢ Hom | |
| 11 | 5 10 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 12 | vh | ⊢ ℎ | |
| 13 | 8 | cv | ⊢ 𝑓 |
| 14 | 3 | cv | ⊢ 𝑥 |
| 15 | 12 | cv | ⊢ ℎ |
| 16 | 7 | cv | ⊢ 𝑦 |
| 17 | 14 16 15 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 18 | 13 17 | wcel | ⊢ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
| 19 | 9 | cv | ⊢ 𝑔 |
| 20 | 16 14 15 | co | ⊢ ( 𝑦 ℎ 𝑥 ) |
| 21 | 19 20 | wcel | ⊢ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) |
| 22 | 18 21 | wa | ⊢ ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) |
| 23 | 14 16 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
| 24 | cco | ⊢ comp | |
| 25 | 5 24 | cfv | ⊢ ( comp ‘ 𝑐 ) |
| 26 | 23 14 25 | co | ⊢ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) |
| 27 | 19 13 26 | co | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) |
| 28 | ccid | ⊢ Id | |
| 29 | 5 28 | cfv | ⊢ ( Id ‘ 𝑐 ) |
| 30 | 14 29 | cfv | ⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
| 31 | 27 30 | wceq | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
| 32 | 22 31 | wa | ⊢ ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) |
| 33 | 32 12 11 | wsbc | ⊢ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) |
| 34 | 33 8 9 | copab | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } |
| 35 | 3 7 6 6 34 | cmpo | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) |
| 36 | 1 2 35 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
| 37 | 0 36 | wceq | ⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |