This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and ax-13 . (Revised by Steven Nguyen, 29-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| vtocl2g.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl2g.3 | ⊢ 𝜑 | ||
| Assertion | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2g.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vtocl2g.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | vtocl2g.3 | ⊢ 𝜑 | |
| 4 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 5 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) ) |
| 6 | 1 3 | vtoclg | ⊢ ( 𝐴 ∈ V → 𝜓 ) |
| 7 | 5 6 | vtoclg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ V → 𝜒 ) ) |
| 8 | 4 7 | mpan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |