This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013) (Revised by Mario Carneiro, 4-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sblim.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| Assertion | sblim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblim.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 3 | 1 | sbf | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜓 ) |
| 4 | 3 | imbi2i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) |
| 5 | 2 4 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜓 ) ) |