This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjunction inside and outside of a substitution are equivalent. (Contributed by NM, 29-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbor | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | sbn | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 4 | 1 3 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 5 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 6 | 5 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ) |
| 7 | df-or | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 8 | 4 6 7 | 3bitr4i | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) |