This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbbi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
| 2 | 1 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 3 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 4 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ∧ [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 6 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ∧ [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ) ) | |
| 7 | dfbi2 | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 9 | 2 8 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |