This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjunction inside and outside of a substitution are equivalent. (Contributed by NM, 29-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbor | |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | |- ( [ y / x ] ( -. ph -> ps ) <-> ( [ y / x ] -. ph -> [ y / x ] ps ) ) |
|
| 2 | sbn | |- ( [ y / x ] -. ph <-> -. [ y / x ] ph ) |
|
| 3 | 2 | imbi1i | |- ( ( [ y / x ] -. ph -> [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
| 4 | 1 3 | bitri | |- ( [ y / x ] ( -. ph -> ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
| 5 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
|
| 6 | 5 | sbbii | |- ( [ y / x ] ( ph \/ ps ) <-> [ y / x ] ( -. ph -> ps ) ) |
| 7 | df-or | |- ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( -. [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 8 | 4 6 7 | 3bitr4i | |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |