This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 30-Apr-2018) Revise df-sb . (Revised by BJ, 25-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbn | ⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | ⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) | |
| 2 | alinexa | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) | |
| 3 | 2 | imbi2i | ⊢ ( ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ↔ ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| 5 | alinexa | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ¬ ∃ 𝑦 ( 𝑦 = 𝑡 ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | |
| 6 | dfsb7 | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑡 ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | |
| 7 | 5 6 | xchbinxr | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |
| 8 | 1 4 7 | 3bitri | ⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |