This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing " x is (effectively) not free in A ". (Contributed by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnfc2 | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | csbtt | ⊢ ( ( 𝑦 ∈ V ∧ Ⅎ 𝑥 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) | |
| 3 | 1 2 | mpan | ⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | csbtt | ⊢ ( ( 𝑧 ∈ V ∧ Ⅎ 𝑥 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = 𝐴 ) | |
| 6 | 4 5 | mpan | ⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 7 | 3 6 | eqtr4d | ⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 8 | 7 | alrimivv | ⊢ ( Ⅎ 𝑥 𝐴 → ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 9 | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 10 | eleq2 | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ( 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) | |
| 11 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ) | |
| 12 | sbcel2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 13 | 11 12 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 14 | sbsbc | ⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) | |
| 15 | sbcel2 | ⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 16 | 14 15 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 17 | 10 13 16 | 3bitr4g | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) |
| 18 | 17 | 2alimi | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) |
| 19 | sbnf2 | ⊢ ( Ⅎ 𝑥 𝑤 ∈ 𝐴 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → Ⅎ 𝑥 𝑤 ∈ 𝐴 ) |
| 21 | 9 20 | nfcd | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 22 | 8 21 | impbii | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |