This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing " x is (effectively) not free in ph ". (Contributed by Gérard Lang, 14-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 22-Sep-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnf2 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | 1 | sb8ef | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 3 | sb8v | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 4 | 2 3 | imbi12i | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 5 | df-nf | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 6 | pm11.53v | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 9 | 8 | sb8ef | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 | sb8v | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 11 | 9 10 | imbi12i | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 12 | pm11.53v | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 13 | 11 5 12 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 14 | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 15 | 13 14 | bitri | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 16 | 7 15 | anbi12i | ⊢ ( ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 17 | pm4.24 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ) | |
| 18 | 2albiim | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 19 | 16 17 18 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |