This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005) (Revised by NM, 19-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbab | ⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 2 | sbsbc | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 4 | sbccom | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 5 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 6 | sbsbc | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 8 | 7 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 | 4 8 | bitr4i | ⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) |
| 10 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) | |
| 11 | 3 9 10 | 3bitrri | ⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) |
| 12 | 11 | eqriv | ⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } |