This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfcd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfcd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | ||
| Assertion | nfcd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcd.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfcd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
| 3 | 1 2 | alrimi | ⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 4 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |