This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.25 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbiota1 | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 2 | 1 | biimpi | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 3 | iota4 | ⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) | |
| 4 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 5 | 4 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 6 | spsbim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 7 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 8 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 9 | 6 7 8 | 3imtr3g | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 10 | dfsbcq | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) | |
| 11 | dfsbcq | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 13 | 9 12 | imbitrid | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 14 | 13 | com23 | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 15 | 5 14 | syl | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 17 | 2 3 16 | sylc | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| 18 | iotaexeu | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) | |
| 19 | 10 11 | anbi12d | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 20 | 19 | imbi1d | ⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 21 | sbcan | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 22 | spesbc | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) | |
| 23 | 21 22 | sylbir | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 24 | 20 23 | vtoclg | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 25 | 24 | expd | ⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 26 | 18 3 25 | sylc | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 27 | 26 | anc2li | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 28 | eupicka | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | |
| 29 | 27 28 | syl6 | ⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 30 | 17 29 | impbid | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |