This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.22 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota4 | ⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 2 | biimpr | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( 𝑥 = 𝑧 → 𝜑 ) ) | |
| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 4 | sb6 | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 6 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) | |
| 7 | 6 | eqcomd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → 𝑧 = ( ℩ 𝑥 𝜑 ) ) |
| 8 | dfsbcq2 | ⊢ ( 𝑧 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| 12 | 1 11 | sylbi | ⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |