This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcel2gv | ⊢ ( 𝐵 ∈ 𝑉 → ( [ 𝐵 / 𝑥 ] 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 2 | eleq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 3 | 1 2 | sbcie2g | ⊢ ( 𝐵 ∈ 𝑉 → ( [ 𝐵 / 𝑥 ] 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |