This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sbcor with a 3-disjuncts. This proof is sbc3orgVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Revised by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbc3or | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcor | ⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) | |
| 2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 3 | 2 | bicomi | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 4 | 3 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 5 | sbcor | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 6 | 5 | orbi1i | ⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 7 | 1 4 6 | 3bitr3i | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 8 | df-3or | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |