This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by JJ, 7-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsbc2 | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ 𝐵 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsbc1 | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
| 2 | eqcom | ⊢ ( 𝐵 = 𝑥 ↔ 𝑥 = 𝐵 ) | |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) |
| 4 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 5 | 1 3 4 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝑥 ↔ 𝐵 = 𝐴 ) ) |