This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcoreleleq | |- ( A e. V -> ( [. A / y ]. ( x e. y \/ y e. x \/ x = y ) <-> ( x e. A \/ A e. x \/ x = A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc3or | |- ( [. A / y ]. ( x e. y \/ y e. x \/ x = y ) <-> ( [. A / y ]. x e. y \/ [. A / y ]. y e. x \/ [. A / y ]. x = y ) ) |
|
| 2 | sbcel2gv | |- ( A e. V -> ( [. A / y ]. x e. y <-> x e. A ) ) |
|
| 3 | sbcel1v | |- ( [. A / y ]. y e. x <-> A e. x ) |
|
| 4 | 3 | a1i | |- ( A e. V -> ( [. A / y ]. y e. x <-> A e. x ) ) |
| 5 | eqsbc2 | |- ( A e. V -> ( [. A / y ]. x = y <-> x = A ) ) |
|
| 6 | 3orbi123 | |- ( ( ( [. A / y ]. x e. y <-> x e. A ) /\ ( [. A / y ]. y e. x <-> A e. x ) /\ ( [. A / y ]. x = y <-> x = A ) ) -> ( ( [. A / y ]. x e. y \/ [. A / y ]. y e. x \/ [. A / y ]. x = y ) <-> ( x e. A \/ A e. x \/ x = A ) ) ) |
|
| 7 | 6 | 3impexpbicomi | |- ( ( [. A / y ]. x e. y <-> x e. A ) -> ( ( [. A / y ]. y e. x <-> A e. x ) -> ( ( [. A / y ]. x = y <-> x = A ) -> ( ( x e. A \/ A e. x \/ x = A ) <-> ( [. A / y ]. x e. y \/ [. A / y ]. y e. x \/ [. A / y ]. x = y ) ) ) ) ) |
| 8 | 2 4 5 7 | syl3c | |- ( A e. V -> ( ( x e. A \/ A e. x \/ x = A ) <-> ( [. A / y ]. x e. y \/ [. A / y ]. y e. x \/ [. A / y ]. x = y ) ) ) |
| 9 | 1 8 | bitr4id | |- ( A e. V -> ( [. A / y ]. ( x e. y \/ y e. x \/ x = y ) <-> ( x e. A \/ A e. x \/ x = A ) ) ) |