This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbco4lem as of 3-Sep-2025. (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco4lemOLD | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2 | ⊢ ( [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑣 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 2 | 1 | sbbii | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑣 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 3 | sbco2vv | ⊢ ( [ 𝑣 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑣 / 𝑦 ] 𝜑 ) | |
| 4 | 3 | 2sbbii | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 5 | sbco2vv | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑣 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 6 | 2 4 5 | 3bitr3i | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |