This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbco4lem as of 3-Sep-2025. (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco4lemOLD | |- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2 | |- ( [ y / x ] [ v / w ] [ w / y ] ph <-> [ v / w ] [ y / x ] [ w / y ] ph ) |
|
| 2 | 1 | sbbii | |- ( [ x / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / v ] [ v / w ] [ y / x ] [ w / y ] ph ) |
| 3 | sbco2vv | |- ( [ v / w ] [ w / y ] ph <-> [ v / y ] ph ) |
|
| 4 | 3 | 2sbbii | |- ( [ x / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) |
| 5 | sbco2vv | |- ( [ x / v ] [ v / w ] [ y / x ] [ w / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |
|
| 6 | 2 4 5 | 3bitr3i | |- ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |