This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbco4 as of 3-Sep-2025. (Contributed by Jim Kingdon, 25-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco4OLD | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2 | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) | |
| 2 | sbco2vv | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) | |
| 3 | 2 | sbbii | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 4 | 1 3 | bitr3i | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 5 | sbco4lem | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ) | |
| 6 | sbco4lem | ⊢ ( [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 7 | 4 5 6 | 3bitri | ⊢ ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |