This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sbco4 . It replaces the temporary variable v with another temporary variable w . (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024) Avoid ax-11 . (Revised by SN, 3-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco4lem | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 2 | 1 | sbbidv | ⊢ ( 𝑣 = 𝑤 → ( [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 3 | 2 | cbvsbv | ⊢ ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |