This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | 2sbbii | ⊢ ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | 1 | sbbii | ⊢ ( [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) |
| 3 | 2 | sbbii | ⊢ ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |