This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcabel.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| Assertion | sbcabel | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcabel.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 3 | sbcex2 | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) | |
| 4 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ∧ [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ) ) | |
| 5 | sbcal | ⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) | |
| 6 | sbcbig | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) | |
| 7 | sbcg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 8 | 7 | bibi1d | ⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 9 | 6 8 | bitrd | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 10 | 9 | albidv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 11 | 5 10 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 12 | eqabb | ⊢ ( 𝑤 = { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) | |
| 13 | 12 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) |
| 14 | eqabb | ⊢ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 15 | 11 13 14 | 3bitr4g | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ↔ 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) ) |
| 16 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝐵 |
| 17 | 16 | sbcgf | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ∧ [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ) ↔ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 19 | 4 18 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 20 | 19 | exbidv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑤 [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 21 | 3 20 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 22 | dfclel | ⊢ ( { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) | |
| 23 | 22 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) |
| 24 | dfclel | ⊢ ( { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) | |
| 25 | 21 23 24 | 3bitr4g | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ) ) |
| 26 | 2 25 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ) ) |