This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satef | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( 𝑀 Sat∈ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑀 Sat∈ 𝑈 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑆 ∈ ( 𝑀 Sat∈ 𝑈 ) ↔ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) ) |
| 3 | simpl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → 𝑀 ∈ 𝑉 ) | |
| 4 | incom | ⊢ ( E ∩ ( 𝑀 × 𝑀 ) ) = ( ( 𝑀 × 𝑀 ) ∩ E ) | |
| 5 | sqxpexg | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 × 𝑀 ) ∈ V ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑀 × 𝑀 ) ∈ V ) |
| 7 | inex1g | ⊢ ( ( 𝑀 × 𝑀 ) ∈ V → ( ( 𝑀 × 𝑀 ) ∩ E ) ∈ V ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( ( 𝑀 × 𝑀 ) ∩ E ) ∈ V ) |
| 9 | 4 8 | eqeltrid | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) |
| 10 | 3 9 | jca | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
| 12 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → 𝑈 ∈ ( Fmla ‘ ω ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) → 𝑈 ∈ ( Fmla ‘ ω ) ) |
| 14 | simpr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) → 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) | |
| 15 | 11 13 14 | 3jca | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) → ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) ) ) |
| 17 | 2 16 | sylbid | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑆 ∈ ( 𝑀 Sat∈ 𝑈 ) → ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( 𝑀 Sat∈ 𝑈 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) ) |
| 19 | satfvel | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( 𝑀 Sat∈ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) |