This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satef | |- ( ( M e. V /\ U e. ( Fmla ` _om ) /\ S e. ( M SatE U ) ) -> S : _om --> M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( M SatE U ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |
|
| 2 | 1 | eleq2d | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( S e. ( M SatE U ) <-> S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) ) |
| 3 | simpl | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> M e. V ) |
|
| 4 | incom | |- ( _E i^i ( M X. M ) ) = ( ( M X. M ) i^i _E ) |
|
| 5 | sqxpexg | |- ( M e. V -> ( M X. M ) e. _V ) |
|
| 6 | 5 | adantr | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( M X. M ) e. _V ) |
| 7 | inex1g | |- ( ( M X. M ) e. _V -> ( ( M X. M ) i^i _E ) e. _V ) |
|
| 8 | 6 7 | syl | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( ( M X. M ) i^i _E ) e. _V ) |
| 9 | 4 8 | eqeltrid | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( _E i^i ( M X. M ) ) e. _V ) |
| 10 | 3 9 | jca | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) ) |
| 11 | 10 | adantr | |- ( ( ( M e. V /\ U e. ( Fmla ` _om ) ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) -> ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) ) |
| 12 | simpr | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> U e. ( Fmla ` _om ) ) |
|
| 13 | 12 | adantr | |- ( ( ( M e. V /\ U e. ( Fmla ` _om ) ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) -> U e. ( Fmla ` _om ) ) |
| 14 | simpr | |- ( ( ( M e. V /\ U e. ( Fmla ` _om ) ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) -> S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |
|
| 15 | 11 13 14 | 3jca | |- ( ( ( M e. V /\ U e. ( Fmla ` _om ) ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) -> ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) ) |
| 16 | 15 | ex | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) -> ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) ) ) |
| 17 | 2 16 | sylbid | |- ( ( M e. V /\ U e. ( Fmla ` _om ) ) -> ( S e. ( M SatE U ) -> ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) ) ) |
| 18 | 17 | 3impia | |- ( ( M e. V /\ U e. ( Fmla ` _om ) /\ S e. ( M SatE U ) ) -> ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) ) |
| 19 | satfvel | |- ( ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) -> S : _om --> M ) |
|
| 20 | 18 19 | syl | |- ( ( M e. V /\ U e. ( Fmla ` _om ) /\ S e. ( M SatE U ) ) -> S : _om --> M ) |