This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Ordering property for the input to D . (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| ruclem2.8 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | ruclem2 | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝑋 ∧ 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 6 | ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 7 | ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 8 | ruclem2.8 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 9 | 3 | leidd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 10 | 3 4 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 11 | 10 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 12 | 11 4 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ ) |
| 13 | 12 | rehalfcld | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) |
| 14 | avglt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) | |
| 15 | 3 4 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 16 | 8 15 | mpbid | ⊢ ( 𝜑 → 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 17 | avglt2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) | |
| 18 | 3 4 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 19 | 8 18 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) |
| 20 | avglt1 | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) | |
| 21 | 11 4 20 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 22 | 19 21 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 23 | 3 11 13 16 22 | lttrd | ⊢ ( 𝜑 → 𝐴 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 24 | 3 13 23 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 25 | breq2 | ⊢ ( 𝐴 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → ( 𝐴 ≤ 𝐴 ↔ 𝐴 ≤ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) ) | |
| 26 | breq2 | ⊢ ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → ( 𝐴 ≤ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ↔ 𝐴 ≤ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) ) | |
| 27 | 25 26 | ifboth | ⊢ ( ( 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → 𝐴 ≤ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 28 | 9 24 27 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≤ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 29 | 1 2 3 4 5 6 7 | ruclem1 | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| 30 | 29 | simp2d | ⊢ ( 𝜑 → 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 31 | 28 30 | breqtrrd | ⊢ ( 𝜑 → 𝐴 ≤ 𝑋 ) |
| 32 | iftrue | ⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) = 𝐴 ) | |
| 33 | iftrue | ⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) | |
| 34 | 32 33 | breq12d | ⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → ( if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) < if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 35 | 16 34 | syl5ibrcom | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) < if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| 36 | avglt2 | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) < 𝐵 ) ) | |
| 37 | 11 4 36 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 38 | 19 37 | mpbid | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) < 𝐵 ) |
| 39 | iffalse | ⊢ ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) | |
| 40 | iffalse | ⊢ ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) = 𝐵 ) | |
| 41 | 39 40 | breq12d | ⊢ ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → ( if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) < if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ↔ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 42 | 38 41 | syl5ibrcom | ⊢ ( 𝜑 → ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) < if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| 43 | 35 42 | pm2.61d | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) < if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 44 | 29 | simp3d | ⊢ ( 𝜑 → 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 45 | 43 30 44 | 3brtr4d | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 46 | 11 4 19 | ltled | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) |
| 47 | 4 | leidd | ⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 48 | breq1 | ⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ↔ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ≤ 𝐵 ) ) | |
| 49 | breq1 | ⊢ ( 𝐵 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) → ( 𝐵 ≤ 𝐵 ↔ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ≤ 𝐵 ) ) | |
| 50 | 48 49 | ifboth | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ≤ 𝐵 ) |
| 51 | 46 47 50 | syl2anc | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ≤ 𝐵 ) |
| 52 | 44 51 | eqbrtrd | ⊢ ( 𝜑 → 𝑌 ≤ 𝐵 ) |
| 53 | 31 45 52 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝑋 ∧ 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |