This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxmetfi.1 | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| Assertion | rrxmetfi | ⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmetfi.1 | ⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 2 | eqid | ⊢ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } | |
| 3 | 2 1 | rrxmet | ⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 4 | eqid | ⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | |
| 6 | 4 5 | rrxbase | ⊢ ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 7 | id | ⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) | |
| 8 | 7 4 5 | rrxbasefi | ⊢ ( 𝐼 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
| 9 | 6 8 | eqtr3d | ⊢ ( 𝐼 ∈ Fin → { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } = ( ℝ ↑m 𝐼 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐼 ∈ Fin → ( Met ‘ { ℎ ∈ ( ℝ ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) = ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 11 | 3 10 | eleqtrd | ⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |