This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015) (Revised by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| rrgsupp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| rrgsupp.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| rrgsupp.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | ||
| rrgsupp.y | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ 𝐵 ) | ||
| Assertion | rrgsupp | ⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = ( 𝑌 supp 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | rrgsupp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | rrgsupp.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | rrgsupp.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | |
| 8 | rrgsupp.y | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ 𝐵 ) | |
| 9 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑋 ∈ 𝐸 ) |
| 10 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑦 ) ∈ V ) | |
| 11 | fconstmpt | ⊢ ( 𝐼 × { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ 𝑋 ) | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( 𝐼 × { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ 𝑋 ) ) |
| 13 | 8 | feqmptd | ⊢ ( 𝜑 → 𝑌 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑦 ) ) ) |
| 14 | 5 9 10 12 13 | offval2 | ⊢ ( 𝜑 → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 16 | 15 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 18 | ovex | ⊢ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ∈ V | |
| 19 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑌 ‘ 𝑦 ) = ( 𝑌 ‘ 𝑥 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 21 | eqid | ⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) | |
| 22 | 20 21 | fvmptg | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 23 | 17 18 22 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 24 | 16 23 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 25 | 24 | neeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 ↔ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ) ) |
| 26 | 25 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 } ) |
| 27 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 28 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐸 ) |
| 29 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑥 ) ∈ 𝐵 ) |
| 30 | 1 2 3 4 | rrgeq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ ( 𝑌 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) = 0 ↔ ( 𝑌 ‘ 𝑥 ) = 0 ) ) |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) = 0 ↔ ( 𝑌 ‘ 𝑥 ) = 0 ) ) |
| 32 | 31 | necon3bid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ↔ ( 𝑌 ‘ 𝑥 ) ≠ 0 ) ) |
| 33 | 32 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 34 | 26 33 | eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 35 | ovex | ⊢ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ∈ V | |
| 36 | 35 21 | fnmpti | ⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) Fn 𝐼 |
| 37 | fneq1 | ⊢ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ↔ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) Fn 𝐼 ) ) | |
| 38 | 36 37 | mpbiri | ⊢ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ) |
| 39 | 14 38 | syl | ⊢ ( 𝜑 → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ) |
| 40 | 4 | fvexi | ⊢ 0 ∈ V |
| 41 | 40 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 42 | suppvalfn | ⊢ ( ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } ) | |
| 43 | 39 5 41 42 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } ) |
| 44 | 8 | ffnd | ⊢ ( 𝜑 → 𝑌 Fn 𝐼 ) |
| 45 | suppvalfn | ⊢ ( ( 𝑌 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑌 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) | |
| 46 | 44 5 41 45 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 47 | 34 43 46 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = ( 𝑌 supp 0 ) ) |