This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | |- E = ( RLReg ` R ) |
|
| rrgval.b | |- B = ( Base ` R ) |
||
| rrgval.t | |- .x. = ( .r ` R ) |
||
| rrgval.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rrgeq0 | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | |- E = ( RLReg ` R ) |
|
| 2 | rrgval.b | |- B = ( Base ` R ) |
|
| 3 | rrgval.t | |- .x. = ( .r ` R ) |
|
| 4 | rrgval.z | |- .0. = ( 0g ` R ) |
|
| 5 | 1 2 3 4 | rrgeq0i | |- ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 6 | 5 | 3adant1 | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 7 | simp1 | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> R e. Ring ) |
|
| 8 | 1 2 3 4 | rrgval | |- E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |
| 9 | 8 | ssrab3 | |- E C_ B |
| 10 | simp2 | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. E ) |
|
| 11 | 9 10 | sselid | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. B ) |
| 12 | 2 3 4 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 13 | 7 11 12 | syl2anc | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( X .x. .0. ) = .0. ) |
| 14 | oveq2 | |- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
|
| 15 | 14 | eqeq1d | |- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
| 16 | 13 15 | syl5ibrcom | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 17 | 6 16 | impbid | |- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |