This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp12i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexp1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) | |
| 2 | 1 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ) ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐵 ∈ ℤ ) | |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐴 ∈ ℤ ) | |
| 5 | simp3l | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑀 ∈ ℕ0 ) | |
| 6 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 8 | simp3r | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 ) | |
| 9 | rpexp1i | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) | |
| 10 | 3 7 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 → ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 11 | 7 3 | gcdcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 ↔ ( 𝐵 gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 13 | zexpcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) | |
| 14 | 3 8 13 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 15 | 7 14 | gcdcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) ) |
| 16 | 15 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ↔ ( ( 𝐵 ↑ 𝑁 ) gcd ( 𝐴 ↑ 𝑀 ) ) = 1 ) ) |
| 17 | 10 12 16 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ( 𝐴 ↑ 𝑀 ) gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |
| 18 | 2 17 | syld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 𝑀 ) gcd ( 𝐵 ↑ 𝑁 ) ) = 1 ) ) |