This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp12i | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexp1i | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
|
| 2 | 1 | 3adant3r | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 3 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> B e. ZZ ) |
|
| 4 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> A e. ZZ ) |
|
| 5 | simp3l | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. NN0 ) |
|
| 6 | zexpcl | |- ( ( A e. ZZ /\ M e. NN0 ) -> ( A ^ M ) e. ZZ ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( A ^ M ) e. ZZ ) |
| 8 | simp3r | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. NN0 ) |
|
| 9 | rpexp1i | |- ( ( B e. ZZ /\ ( A ^ M ) e. ZZ /\ N e. NN0 ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
|
| 10 | 3 7 8 9 | syl3anc | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( B gcd ( A ^ M ) ) = 1 -> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
| 11 | 7 3 | gcdcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd B ) = ( B gcd ( A ^ M ) ) ) |
| 12 | 11 | eqeq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( B gcd ( A ^ M ) ) = 1 ) ) |
| 13 | zexpcl | |- ( ( B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
|
| 14 | 3 8 13 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( B ^ N ) e. ZZ ) |
| 15 | 7 14 | gcdcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A ^ M ) gcd ( B ^ N ) ) = ( ( B ^ N ) gcd ( A ^ M ) ) ) |
| 16 | 15 | eqeq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd ( A ^ M ) ) = 1 ) ) |
| 17 | 10 12 16 | 3imtr4d | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( ( A ^ M ) gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |
| 18 | 2 17 | syld | |- ( ( A e. ZZ /\ B e. ZZ /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd ( B ^ N ) ) = 1 ) ) |