This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmndvdsfaclt | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 2 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 3 | 2 | nnred | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 4 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) | |
| 5 | 1 3 4 | syl2anr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑁 ) ) |
| 6 | prmfac1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( ! ‘ 𝑁 ) ) → 𝑃 ≤ 𝑁 ) | |
| 7 | 6 | 3exp | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) ) |
| 8 | 7 | impcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∥ ( ! ‘ 𝑁 ) → 𝑃 ≤ 𝑁 ) ) |
| 9 | 8 | con3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝑃 ≤ 𝑁 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |
| 10 | 5 9 | sylbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝑁 ) ) ) |