This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringi.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | rngodir | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringi.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 3 | rngoi | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 7 | simp3 | ⊢ ( ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) | |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 9 | 8 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐺 𝑦 ) 𝐻 𝑧 ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐻 𝑧 ) = ( 𝐴 𝐻 𝑧 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝑧 ) ) |
| 17 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐻 𝑧 ) = ( 𝐵 𝐻 𝑧 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝐵 𝐻 𝑧 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝐵 𝐻 𝑧 ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) ) | |
| 21 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐻 𝑧 ) = ( 𝐴 𝐻 𝐶 ) ) | |
| 22 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐻 𝑧 ) = ( 𝐵 𝐻 𝐶 ) ) | |
| 23 | 21 22 | oveq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝐵 𝐻 𝑧 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝑧 ) = ( ( 𝐴 𝐻 𝑧 ) 𝐺 ( 𝐵 𝐻 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) ) |
| 25 | 14 19 24 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) ) |
| 26 | 9 25 | syl5 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) ) |
| 27 | 6 26 | mpan9 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( 𝐵 𝐻 𝐶 ) ) ) |