This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlz.1 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| ringlz.2 | ⊢ 𝑋 = ran 𝐺 | ||
| ringlz.3 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | ||
| ringlz.4 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| Assertion | rngolz | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlz.1 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 2 | ringlz.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | ringlz.3 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 4 | ringlz.4 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 5 | 3 | rngogrpo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
| 6 | 2 1 | grpoidcl | ⊢ ( 𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋 ) |
| 7 | 2 1 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 8 | 5 6 7 | syl2anc2 | ⊢ ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 ) = ( 𝑍 𝐻 𝐴 ) ) |
| 11 | 3 2 1 | rngo0cl | ⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ 𝑋 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 13 | simpr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 14 | 12 12 13 | 3jca | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 15 | 3 4 2 | rngodir | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑍 𝐺 𝑍 ) 𝐻 𝐴 ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) ) |
| 17 | 5 | adantr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 18 | simpl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝑅 ∈ RingOps ) | |
| 19 | 3 4 2 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ) |
| 20 | 18 12 13 19 | syl3anc | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ) |
| 21 | 2 1 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ) → ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) = ( 𝑍 𝐻 𝐴 ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) |
| 23 | 17 20 22 | syl2anc | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) |
| 24 | 10 16 23 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ) |
| 25 | 2 | grpolcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ ( 𝑍 𝐻 𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ↔ ( 𝑍 𝐻 𝐴 ) = 𝑍 ) ) |
| 26 | 17 20 12 20 25 | syl13anc | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑍 𝐻 𝐴 ) 𝐺 ( 𝑍 𝐻 𝐴 ) ) = ( ( 𝑍 𝐻 𝐴 ) 𝐺 𝑍 ) ↔ ( 𝑍 𝐻 𝐴 ) = 𝑍 ) ) |
| 27 | 24 26 | mpbid | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝐻 𝐴 ) = 𝑍 ) |