This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grplcan.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | grpolcan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | oveq2 | ⊢ ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) | |
| 3 | 2 | adantl | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 4 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 6 | 1 4 5 | grpolinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) ) |
| 9 | 1 5 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 10 | 9 | adantrl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 11 | simprr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 12 | simprl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 13 | 10 11 12 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 14 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
| 15 | 13 14 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
| 17 | 1 4 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) = 𝐴 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) = 𝐴 ) |
| 19 | 8 16 18 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
| 20 | 19 | adantrl | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
| 22 | 6 | adantrl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) ) |
| 24 | 9 | adantrl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 25 | simprr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 26 | simprl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 27 | 24 25 26 | 3jca | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 28 | 1 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 29 | 27 28 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
| 30 | 1 4 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
| 31 | 30 | adantrr | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
| 32 | 23 29 31 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
| 33 | 32 | adantlr | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
| 34 | 33 | adantr | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
| 35 | 3 21 34 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → 𝐴 = 𝐵 ) |
| 36 | 35 | exp53 | ⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → 𝐴 = 𝐵 ) ) ) ) ) |
| 37 | 36 | 3imp2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 38 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) | |
| 39 | 37 38 | impbid1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |