This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unity element of a ring is unique. (Contributed by NM, 4-Apr-2009) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringi.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | rngoideu | ⊢ ( 𝑅 ∈ RingOps → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringi.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 3 | rngoi | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑢 𝐻 𝑥 ) 𝐻 𝑦 ) = ( 𝑢 𝐻 ( 𝑥 𝐻 𝑦 ) ) ∧ ( 𝑢 𝐻 ( 𝑥 𝐺 𝑦 ) ) = ( ( 𝑢 𝐻 𝑥 ) 𝐺 ( 𝑢 𝐻 𝑦 ) ) ∧ ( ( 𝑢 𝐺 𝑥 ) 𝐻 𝑦 ) = ( ( 𝑢 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑦 ) ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) ) |
| 5 | 4 | simprrd | ⊢ ( 𝑅 ∈ RingOps → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 6 | simpl | ⊢ ( ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ( 𝑢 𝐻 𝑥 ) = 𝑥 ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐻 𝑥 ) = 𝑥 ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑢 𝐻 𝑥 ) = ( 𝑢 𝐻 𝑦 ) ) | |
| 9 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐻 𝑥 ) = 𝑥 → ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 12 | 7 11 | syl5 | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) → ( 𝑢 𝐻 𝑦 ) = 𝑦 ) ) |
| 13 | simpr | ⊢ ( ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ( 𝑥 𝐻 𝑦 ) = 𝑥 ) | |
| 14 | 13 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) = 𝑥 ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 𝐻 𝑦 ) = ( 𝑢 𝐻 𝑦 ) ) | |
| 16 | id | ⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 𝐻 𝑦 ) = 𝑥 ↔ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 18 | 17 | rspcv | ⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑦 ) = 𝑥 → ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 19 | 14 18 | syl5 | ⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) → ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) |
| 20 | 12 19 | im2anan9r | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) ) ) |
| 21 | eqtr2 | ⊢ ( ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) → 𝑦 = 𝑢 ) | |
| 22 | 21 | equcomd | ⊢ ( ( ( 𝑢 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐻 𝑦 ) = 𝑢 ) → 𝑢 = 𝑦 ) |
| 23 | 20 22 | syl6 | ⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) |
| 24 | 23 | rgen2 | ⊢ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) |
| 25 | oveq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) | |
| 26 | 25 | eqeq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑦 𝐻 𝑥 ) = 𝑥 ) ) |
| 27 | 26 | ovanraleqv | ⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) ) |
| 28 | 27 | reu4 | ⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) ) |
| 29 | 5 24 28 | sylanblrc | ⊢ ( 𝑅 ∈ RingOps → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |