This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007) (Proof shortened by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringi.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | rngoi | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringi.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 | opeq12i | ⊢ 〈 𝐺 , 𝐻 〉 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 |
| 5 | relrngo | ⊢ Rel RingOps | |
| 6 | 1st2nd | ⊢ ( ( Rel RingOps ∧ 𝑅 ∈ RingOps ) → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝑅 ∈ RingOps → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
| 8 | 4 7 | eqtr4id | ⊢ ( 𝑅 ∈ RingOps → 〈 𝐺 , 𝐻 〉 = 𝑅 ) |
| 9 | id | ⊢ ( 𝑅 ∈ RingOps → 𝑅 ∈ RingOps ) | |
| 10 | 8 9 | eqeltrd | ⊢ ( 𝑅 ∈ RingOps → 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
| 11 | 2 | fvexi | ⊢ 𝐻 ∈ V |
| 12 | 3 | isrngo | ⊢ ( 𝐻 ∈ V → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
| 13 | 11 12 | ax-mp | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
| 14 | 10 13 | sylib | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |