This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unity element of a ring is unique. (Contributed by NM, 4-Apr-2009) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
| ringi.2 | |- H = ( 2nd ` R ) |
||
| ringi.3 | |- X = ran G |
||
| Assertion | rngoideu | |- ( R e. RingOps -> E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringi.3 | |- X = ran G |
|
| 4 | 1 2 3 | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. u e. X A. x e. X A. y e. X ( ( ( u H x ) H y ) = ( u H ( x H y ) ) /\ ( u H ( x G y ) ) = ( ( u H x ) G ( u H y ) ) /\ ( ( u G x ) H y ) = ( ( u H y ) G ( x H y ) ) ) /\ E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) ) ) |
| 5 | 4 | simprrd | |- ( R e. RingOps -> E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 6 | simpl | |- ( ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H x ) = x ) |
|
| 7 | 6 | ralimi | |- ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> A. x e. X ( u H x ) = x ) |
| 8 | oveq2 | |- ( x = y -> ( u H x ) = ( u H y ) ) |
|
| 9 | id | |- ( x = y -> x = y ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = y -> ( ( u H x ) = x <-> ( u H y ) = y ) ) |
| 11 | 10 | rspcv | |- ( y e. X -> ( A. x e. X ( u H x ) = x -> ( u H y ) = y ) ) |
| 12 | 7 11 | syl5 | |- ( y e. X -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) -> ( u H y ) = y ) ) |
| 13 | simpr | |- ( ( ( y H x ) = x /\ ( x H y ) = x ) -> ( x H y ) = x ) |
|
| 14 | 13 | ralimi | |- ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> A. x e. X ( x H y ) = x ) |
| 15 | oveq1 | |- ( x = u -> ( x H y ) = ( u H y ) ) |
|
| 16 | id | |- ( x = u -> x = u ) |
|
| 17 | 15 16 | eqeq12d | |- ( x = u -> ( ( x H y ) = x <-> ( u H y ) = u ) ) |
| 18 | 17 | rspcv | |- ( u e. X -> ( A. x e. X ( x H y ) = x -> ( u H y ) = u ) ) |
| 19 | 14 18 | syl5 | |- ( u e. X -> ( A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) -> ( u H y ) = u ) ) |
| 20 | 12 19 | im2anan9r | |- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> ( ( u H y ) = y /\ ( u H y ) = u ) ) ) |
| 21 | eqtr2 | |- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> y = u ) |
|
| 22 | 21 | equcomd | |- ( ( ( u H y ) = y /\ ( u H y ) = u ) -> u = y ) |
| 23 | 20 22 | syl6 | |- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) |
| 24 | 23 | rgen2 | |- A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) |
| 25 | oveq1 | |- ( u = y -> ( u H x ) = ( y H x ) ) |
|
| 26 | 25 | eqeq1d | |- ( u = y -> ( ( u H x ) = x <-> ( y H x ) = x ) ) |
| 27 | 26 | ovanraleqv | |- ( u = y -> ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) ) |
| 28 | 27 | reu4 | |- ( E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) <-> ( E. u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. u e. X A. y e. X ( ( A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) /\ A. x e. X ( ( y H x ) = x /\ ( x H y ) = x ) ) -> u = y ) ) ) |
| 29 | 5 24 28 | sylanblrc | |- ( R e. RingOps -> E! u e. X A. x e. X ( ( u H x ) = x /\ ( x H u ) = x ) ) |