This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the algebra scalar lifting function. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| Assertion | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 6 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 11 | 10 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 12 | eqidd | ⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) | |
| 13 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 1r ‘ 𝑤 ) = ( 1r ‘ 𝑊 ) ) | |
| 14 | 13 5 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( 1r ‘ 𝑤 ) = 1 ) |
| 15 | 11 12 14 | oveq123d | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) = ( 𝑥 · 1 ) ) |
| 16 | 9 15 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
| 17 | df-ascl | ⊢ algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) | |
| 18 | 16 17 3 | mptfvmpt | ⊢ ( 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
| 19 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ∅ ) | |
| 20 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) = ∅ | |
| 21 | 19 20 | eqtr4di | ⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) ) |
| 22 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑊 ) = ∅ ) | |
| 23 | 2 22 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐹 = ∅ ) |
| 24 | 23 | fveq2d | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐹 ) = ( Base ‘ ∅ ) ) |
| 25 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 26 | 24 25 | eqtr4di | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐹 ) = ∅ ) |
| 27 | 3 26 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
| 28 | 27 | mpteq1d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) ) |
| 29 | 21 28 | eqtr4d | ⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
| 30 | 18 29 | pm2.61i | ⊢ ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |
| 31 | 1 30 | eqtri | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |