This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmosn | ⊢ ∃* 𝑥 ∈ { 𝐴 } 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 | |
| 3 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | 2 3 | rexsngf | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 5 | 2 3 | reusngf | ⊢ ( 𝐴 ∈ V → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 6 | 1 4 5 | 3imtr4d | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |
| 7 | rmo5 | ⊢ ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 ) |
| 9 | rmo0 | ⊢ ∃* 𝑥 ∈ ∅ 𝜑 | |
| 10 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 11 | rmoeq1 | ⊢ ( { 𝐴 } = ∅ → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) ) |
| 13 | 9 12 | mpbiri | ⊢ ( ¬ 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 ) |
| 14 | 8 13 | pm2.61i | ⊢ ∃* 𝑥 ∈ { 𝐴 } 𝜑 |