This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexsngf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| rexsngf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | reusngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexsngf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | rexsngf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑐 / 𝑥 ] 𝜑 | |
| 4 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 5 | sbceq1a | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) | |
| 6 | dfsbcq | ⊢ ( 𝑤 = 𝑐 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑐 / 𝑥 ] 𝜑 ) ) | |
| 7 | 3 4 5 6 | reu8nf | ⊢ ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 } | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝐴 = 𝑐 | |
| 10 | 3 9 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 11 | 8 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 12 | 1 11 | nfan | ⊢ Ⅎ 𝑥 ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) |
| 13 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑐 ↔ 𝐴 = 𝑐 ) ) | |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 16 | 2 15 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) ) |
| 17 | 12 16 | rexsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) ) |
| 18 | nfv | ⊢ Ⅎ 𝑐 ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) | |
| 19 | dfsbcq | ⊢ ( 𝑐 = 𝐴 → ( [ 𝑐 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 20 | eqeq2 | ⊢ ( 𝑐 = 𝐴 → ( 𝐴 = 𝑐 ↔ 𝐴 = 𝐴 ) ) | |
| 21 | 19 20 | imbi12d | ⊢ ( 𝑐 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 22 | 18 21 | ralsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 23 | 22 | anbi2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ↔ ( 𝜓 ∧ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) ) |
| 24 | eqidd | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) | |
| 25 | 24 | biantru | ⊢ ( 𝜓 ↔ ( 𝜓 ∧ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 26 | 23 25 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ↔ 𝜓 ) ) |
| 27 | 17 26 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ 𝜓 ) ) |
| 28 | 7 27 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |