This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmosn | |- E* x e. { A } ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | |- ( A e. _V -> ( [. A / x ]. ph -> [. A / x ]. ph ) ) |
|
| 2 | nfsbc1v | |- F/ x [. A / x ]. ph |
|
| 3 | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
|
| 4 | 2 3 | rexsngf | |- ( A e. _V -> ( E. x e. { A } ph <-> [. A / x ]. ph ) ) |
| 5 | 2 3 | reusngf | |- ( A e. _V -> ( E! x e. { A } ph <-> [. A / x ]. ph ) ) |
| 6 | 1 4 5 | 3imtr4d | |- ( A e. _V -> ( E. x e. { A } ph -> E! x e. { A } ph ) ) |
| 7 | rmo5 | |- ( E* x e. { A } ph <-> ( E. x e. { A } ph -> E! x e. { A } ph ) ) |
|
| 8 | 6 7 | sylibr | |- ( A e. _V -> E* x e. { A } ph ) |
| 9 | rmo0 | |- E* x e. (/) ph |
|
| 10 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 11 | rmoeq1 | |- ( { A } = (/) -> ( E* x e. { A } ph <-> E* x e. (/) ph ) ) |
|
| 12 | 10 11 | sylbi | |- ( -. A e. _V -> ( E* x e. { A } ph <-> E* x e. (/) ph ) ) |
| 13 | 9 12 | mpbiri | |- ( -. A e. _V -> E* x e. { A } ph ) |
| 14 | 8 13 | pm2.61i | |- E* x e. { A } ph |