This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmoeq1 | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | biimpi | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 3 | anbi1 | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 4 | 3 | imbi1d | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) ) |
| 6 | albi | ⊢ ( ∀ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) ) | |
| 7 | 2 5 6 | 3syl | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) ) |
| 8 | 7 | exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑧 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) ) |
| 9 | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑧 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) | |
| 10 | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑧 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝑧 ) ) | |
| 11 | 8 9 10 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 12 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 13 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 14 | 11 12 13 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜑 ) ) |