This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of r19.12 where its converse holds. (Contributed by NM, 19-May-2008) (Revised by Mario Carneiro, 23-Apr-2015) (Revised by BJ, 18-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.12sn | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ { 𝐴 } 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcralg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 2 | rexsns | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 3 | rexsns | ⊢ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 | 1 2 4 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ { 𝐴 } 𝜑 ) ) |