This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| Assertion | rmo3 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 4 | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) | |
| 5 | 3 4 | bianbi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 7 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) | |
| 8 | ancom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 9 | 8 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 10 | 6 7 9 | 3bitri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 11 | 10 | imbi1i | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
| 12 | impexp | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 13 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) | |
| 14 | 11 12 13 | 3bitri | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 16 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) | |
| 17 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 18 | 15 16 17 | 3bitr2i | ⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 19 | 18 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 20 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 21 | 20 1 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 22 | 21 | mo3 | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
| 23 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 24 | 19 22 23 | 3bitr4i | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 25 | 2 24 | bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |