This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmoi.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| rmoi.c | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | rmob | ⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | rmoi.c | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 4 | simprl | ⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → 𝐵 ∈ 𝐴 ) | |
| 5 | eleq1 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 → 𝐶 ∈ 𝐴 ) ) |
| 7 | simpl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) → 𝐶 ∈ 𝐴 ) | |
| 8 | 7 | a1i | ⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) → 𝐶 ∈ 𝐴 ) ) |
| 9 | 4 | anim1i | ⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 10 | simpll | ⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 11 | simplr | ⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 12 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 13 | 12 1 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 15 | 14 2 | anbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 16 | 13 15 | mob | ⊢ ( ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 17 | 9 10 11 16 | syl3anc | ⊢ ( ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 18 | 17 | ex | ⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) ) |
| 19 | 6 8 18 | pm5.21ndd | ⊢ ( ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 20 | 3 19 | sylanb | ⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |