This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimi.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) | |
| rlimi.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| rlimi.3 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| rlimi.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| Assertion | rlimi2 | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ) | |
| 2 | rlimi.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 3 | rlimi.3 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 4 | rlimi.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | 1 2 3 | rlimi | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |
| 6 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) | |
| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 8 | fndm | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 9 | 1 7 8 | 3syl | ⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 10 | rlimss | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → dom ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 12 | 9 11 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 13 | rexico | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) | |
| 14 | 12 4 13 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) ) |
| 15 | 5 14 | mpbird | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑅 ) ) |