This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ello1 | ⊢ ( 𝐹 ∈ ≤𝑂(1) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 2 | 1 | ineq1d | ⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) = ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ) |
| 3 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 5 | 2 4 | raleqbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 6 | 5 | 2rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 7 | df-lo1 | ⊢ ≤𝑂(1) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } | |
| 8 | 6 7 | elrab2 | ⊢ ( 𝐹 ∈ ≤𝑂(1) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |