This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimi.1 | |- ( ph -> A. z e. A B e. V ) |
|
| rlimi.2 | |- ( ph -> R e. RR+ ) |
||
| rlimi.3 | |- ( ph -> ( z e. A |-> B ) ~~>r C ) |
||
| rlimi.4 | |- ( ph -> D e. RR ) |
||
| Assertion | rlimi2 | |- ( ph -> E. y e. ( D [,) +oo ) A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | |- ( ph -> A. z e. A B e. V ) |
|
| 2 | rlimi.2 | |- ( ph -> R e. RR+ ) |
|
| 3 | rlimi.3 | |- ( ph -> ( z e. A |-> B ) ~~>r C ) |
|
| 4 | rlimi.4 | |- ( ph -> D e. RR ) |
|
| 5 | 1 2 3 | rlimi | |- ( ph -> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) |
| 6 | eqid | |- ( z e. A |-> B ) = ( z e. A |-> B ) |
|
| 7 | 6 | fnmpt | |- ( A. z e. A B e. V -> ( z e. A |-> B ) Fn A ) |
| 8 | fndm | |- ( ( z e. A |-> B ) Fn A -> dom ( z e. A |-> B ) = A ) |
|
| 9 | 1 7 8 | 3syl | |- ( ph -> dom ( z e. A |-> B ) = A ) |
| 10 | rlimss | |- ( ( z e. A |-> B ) ~~>r C -> dom ( z e. A |-> B ) C_ RR ) |
|
| 11 | 3 10 | syl | |- ( ph -> dom ( z e. A |-> B ) C_ RR ) |
| 12 | 9 11 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 13 | rexico | |- ( ( A C_ RR /\ D e. RR ) -> ( E. y e. ( D [,) +oo ) A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) <-> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) ) |
|
| 14 | 12 4 13 | syl2anc | |- ( ph -> ( E. y e. ( D [,) +oo ) A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) <-> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) ) |
| 15 | 5 14 | mpbird | |- ( ph -> E. y e. ( D [,) +oo ) A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) |